
Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Improving Standard C++
for the Physics Community

CHEP 2004
Interlaken, Switzerland

Marc Paterno & W. E. Brown

Fermi National Accelerator Laboratory

30 September 2004

1

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Outline

1 Goals, motivation, overview

2 A sampling of what’s likely ahead for C++
Enhanced function-declarations to improve performance
Random-number toolkit to improve domain support
Mathematical special functions to improve domain support
Shared-ownership pointers to improve interoperability
Move semantics to improve performance

3 Further developments
Additional proposals
In the standard library
In the core language
On the horizon

4 Conclusion

2

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

How did Fermilab get involved?

Then Walter invited his friend Bjarne Stroustrup to speak at
Fermilab for ACAT 2000 . . .

. . . and Bjarne said if the scientific community wants changes, we
should get involved — so Fermilab did!

3

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

How did Fermilab get involved?

Then Walter invited his friend Bjarne Stroustrup to speak at
Fermilab for ACAT 2000 . . .

. . . and Bjarne said if the scientific community wants changes, we
should get involved — so Fermilab did!

4

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Goals for this talk

To inform the physics community of:

The possible future directions of Standard C++
Fermilab’s role in influencing this direction

To encourage greater participation in setting this direction:

So that features important to us are included
So that these features are compatible with our use

To note proposed features of special interest to us

5

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

C++ standards bodies and their work

The “standards committee” is really multiple committees:
ISO JTC1-SC22/WG21 is the international standards committee

Its members are national standards bodies (currently 15)
ANSI NCITS/J16 is the US national standards committee

Fermilab is a voting member of J16

From the 1998 publication of the C++ Standard until 2001 was a
“period of calm to enhance the stability of the language”∗

Nonetheless busy: identified, evaluated, consolidated many
hundreds of editorial and minor technical improvements
Resulted in an updated standard: C++03

Since 2001 the committee has been working toward C++0x :
Still soliciting and evaluating proposals for extensions to the
language and to the standard library
A Technical Report on the standard library is likely to be voted out
of committee in October 2004

∗B. Stroustrup
6

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Outline

1 Goals, motivation, overview

2 A sampling of what’s likely ahead for C++
Enhanced function-declarations to improve performance
Random-number toolkit to improve domain support
Mathematical special functions to improve domain support
Shared-ownership pointers to improve interoperability
Move semantics to improve performance

3 Further developments
Additional proposals
In the standard library
In the core language
On the horizon

4 Conclusion

7

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Enhanced function-declarations to improve performance

Observation : Compilers are often unable to “see through”
function calls in order to optimize code:

They may not safely assume that function calls are benign
Whole-program analysis is expensive and often impossible
Optimization opportunities are lost

Observation : Programmers frequently have the information the
compiler lacks but needs for better optimizations
Proposal : Introduce new qualifiers pure† and nothrow:

To let a programmer declare a function’s relevant characteristics
To have the compiler verify this claimed behavior
To obtain better-optimized code from compiler analysis of this new
information at each function call site

z = f (x) + f (y) // can this be done in parallel ?

†pure = has no side-effects
8

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Random-number toolkit to improve domain support

Observation : High-quality pseudorandom-number generation is
required in many fields:

gaming, testing, security, numerics, . . . , physics
Observation : The existing standard facility (rand and srand) is
grossly inadequate for common uses:

Sequences are not reproducible across implementations
Typical implementations exhibit poor “randomness”
Only uniformly distributed random integers are provided

9

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Features of the random-number toolkit

Proposal : Provide a flexible and extensible framework for
manipulating engines and distributions:

An engine is a “source of randomness”
A distribution creates, from the output of an engine, a stream of
random variates with prescribed properties
It is easy to add user-defined distributions
Experts can add new engines
Added components work seamlessly with existing components

Proposal : Include engines and distributions important to our
community, and with characteristics important to us:

Engines’ outputs are guaranteed to be portable and reproducible
Distributions’ outputs are guaranteed to be reproducible

Show list of engines and distributions

10

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Mathematical special functions to improve domain support

Observation : Current mathematics support is scant — only a
small handful of transcendental functions

Proposal : Add support for some of the most important functions
of mathematical physics

This will be the first significant enhancement to <math.h> in
circa 30 years
Being (favorably) considered also by the C standards
committees:

Designed to be compatible with C . . .
And thus is immediately compatible with many (most?) other
programming languages

11

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Features of the special functions proposal

Why standardize special functions?
Quality and reliability; professional attention to important details
often overlooked by many application programmers, e.g.:

Performance (both in speed and in space)
Corner cases that may need special handling
Error-reporting and -handling

Portability and re-use; let us focus on physics problems rather
than on issues related to infrastructure or platform dependency

Designed to follow C++ style, special functions are functions;
other designs would:

Violate the zero-overhead principle
Treat users’ extensions as second-class citizens

Show list of functions

12

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Shared-ownership pointers to improve interoperability

Observation : No pointer type having shared-ownership
semantics is uniformly available today:

But such types are often needed, so . . .
We re-invent and produce unique versions, a situation akin to the
days before std::string , but . . .
Implementation (even by experts) is known to be “exceedingly
difficult,”‡ especially in the presence of exceptions, so . . .
We waste time re-inventing the wheel (and sometimes we make
square wheels), but then . . .
Different libraries can’t communicate using them, because each
has its own implementation

Proposal : Provide a shared-ownership smart pointer:
Automate most details of dynamic lifetime management
Based on years of experience with Boost’s§ shared_ptr

‡H. Sutter
§http://www.boost.org

13

http://www.boost.org

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Move semantics to improve performance

Observation : Copying an object can be expensive (e.g., deep
copies of contained objects)
Proposal : Reduce cost by allowing choice of moving or copying
Define move as the ability to cheaply transfer the value of an
object from a source to a target, with no regard for the value of
the source after the move
Move semantics are typically applicable when the source object:

Will be destroyed shortly after the copy, or . . .
Will get a new value shortly after the copy

Experimental implementation has seen (in realistic cases) a 10-
to 20-fold speed increase¶

std :: vector <std :: string > greetings (10, " hello ");
greetings . insert (greetings . begin (), " bonjour ");

¶H. Hinnant, Metrowerks
14

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Outline

1 Goals, motivation, overview

2 A sampling of what’s likely ahead for C++
Enhanced function-declarations to improve performance
Random-number toolkit to improve domain support
Mathematical special functions to improve domain support
Shared-ownership pointers to improve interoperability
Move semantics to improve performance

3 Further developments
Additional proposals
In the standard library
In the core language
On the horizon

4 Conclusion

15

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Additional proposals

The committee is evaluating many other proposals

We are still receiving new proposals
In general, we intend to:

Keep to the zero-overhead principle
Minimize incompatibilities with C++03 and C99
Maintain or increase type safety
Improve portability, especially by minimizing
“implementation-defined” and “undefined” behavior

16

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Proposed additions 1: standard library

There are too many proposed additions to the standard library to
discuss them all here . . .

Random numbers

Polymorphic
function-object wrappers

Type traits

Enhanced function-binders

Unordered (hashed)
containers

Regular expressions

Mathematical
special functions

Tuple types

Shared-ownership
smart pointers

Member-pointer adaptors

Reference wrappers

Function-result type-traits

17

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Proposed additions 1: standard library

There are too many proposed additions to the standard library to
discuss them all here . . .

Random numbers

Polymorphic
function-object wrappers

Type traits

Enhanced function-binders

Unordered (hashed)
containers

Regular expressions

Mathematical
special functions

Tuple types

Shared-ownership
smart pointers

Member-pointer adaptors

Reference wrappers

Function-result type-traits

I discussed only a few of them.

18

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Proposed additions 2: core language

There are also too many proposed additions to the core language to
discuss them all here . . .

Enhanced
function-declarations

Compile-time reflection

Forwarding constructors

Concepts for
generic programming

Static assertions

decltype and auto

Move semantics

Local classes as
template parameters

Literals of user-defined types

Generalized initializer-lists

Null-pointer constant

Template aliases

Dynamic libraries

19

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Proposed additions 2: core language

There are also too many proposed additions to the core language to
discuss them all here . . .

Enhanced
function-declarations

Compile-time reflection

Forwarding constructors

Concepts for
generic programming

Static assertions

decltype and auto

Move semantics

Local classes as
template parameters

Literals of user-defined types

Generalized initializer-lists

Null-pointer constant

Template aliases

Dynamic libraries

I discussed only a few of them

20

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

A sample of what else is on the horizon

Computer floating-point arithmetic has historically been largely
based on binary representation
A recently-promulgated ISO standard promotes the cause of
decimal floating-point arithmetic:

Primarily motivated by financial applications, but . . .
Also of interest to the scientific community

Vendors have committed to new hardware (!)
in support of decimal floating-point arithmetic
Long-term view suggests:

Binary floating-point arithmetic may stagnate/fossilize, and . . .
Decimal arithmetic may come to dominate numeric types

C++ is exploring language and library support for decimal
arithmetic; many thorny problems need to be addressed

21

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Outline

1 Goals, motivation, overview

2 A sampling of what’s likely ahead for C++
Enhanced function-declarations to improve performance
Random-number toolkit to improve domain support
Mathematical special functions to improve domain support
Shared-ownership pointers to improve interoperability
Move semantics to improve performance

3 Further developments
Additional proposals
In the standard library
In the core language
On the horizon

4 Conclusion

22

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Why we should continue to participate

C++ continues to be of significant interest to physics:
Expressiveness
Performance
Significant community experience

C++ is being enhanced in directions of substantive interest to us.
Fermilab has been actively nudging it in these directions!
Standard components benefit us all:

Require less in-house development/maintenance
Enhance efforts to share code
Allow us to focus on physics, not infrastructure

Walter and I hope to be able to continue supporting our
community in the C++ standards effort—and welcome support
from others.

23

Goals, motivation, overview A sampling of what’s likely ahead for C++ Further developments Conclusion

Online references

The C++ committee has a public web site at
http://www.open-std.org/jtc1/sc22/wg21/
(a very few pages are not public)
Recent committee papers are found at:

http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2004/
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2003/

Walter and I can be reached via e-mail:
Marc Paterno: paterno@fnal.gov
Walter Brown: wb@fnal.gov

24

http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/
mailto:paterno@fnal.gov
mailto:wb@fnal.gov

Engines and distributions provided

Engines :

Basic engines are: linear congruential, Mersenne twister,
subtract-with-carry (“ranlux”)

Basic engines can be modified or combined, using: discard
block, xor combine

Distributions :

integer uniform, floating-point uniform

Bernoulli, binomial, geometric, negative binomial

Poisson, exponential, gamma, Weibull, extreme value

normal, lognormal, χ2, Breit-Wigner, Fisher F , Student t

histogram sampling, cumulative distribution function sampling

Return to talk

Special functions provided

Bessel and Neumann
functions (cylindrical and
spherical, 1st and 2nd kinds)

Legendre and associated
Legendre polynomials

Spherical harmonics

Hermite polynomials

Laguerre and associated
Laguerre polynomials

Gamma function

Complete and incomplete
elliptic integrals (1st, 2nd

and 3rd kinds)

Euler beta function

Exponential integral

Riemann zeta function

Error and complementary
error function

Hypergeometric and confluent
hypergeometric functions

Return to talk

	Goals, motivation, overview
	A sampling of what's likely ahead for C++
	Enhanced function-declarations to improve performance
	Random-number toolkit to improve domain support
	Mathematical special functions to improve domain support
	Shared-ownership pointers to improve interoperability
	Move semantics to improve performance

	Further developments
	Additional proposals
	In the standard library
	In the core language
	On the horizon

	Conclusion

